Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005900

RESUMO

The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors.


Assuntos
Anti-Infecciosos , Bacteriófagos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Agricultura , Anti-Infecciosos/farmacologia , Criação de Animais Domésticos
2.
Front Microbiol ; 13: 838490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464909

RESUMO

The monitoring of antimicrobial resistance (AMR) in bacterial pathogens of animals is not currently coordinated at European level. To fill this gap, experts of the European Union Joint Action on Antimicrobial Resistance and Healthcare Associated Infections (EU-JAMRAI) recommended building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet). In this study, we (i) identified national monitoring systems for AMR in bacterial pathogens of animals (both companion and food-producing) among 27 countries affiliated to EU-JAMRAI, (ii) described their structures and operations, and (iii) analyzed their respective strengths, weaknesses, opportunities and threats (SWOT). Twelve countries reported having at least one national monitoring system in place, representing an opportunity to launch EARS-Vet, but highlighting important gaps in AMR data generation in Europe. In total, 15 national monitoring systems from 11 countries were described and analyzed. They displayed diverse structures and operations, but most of them shared common weaknesses (e.g., data management and representativeness) and common threats (e.g., economic vulnerability and data access), which could be addressed collectively under EARS-Vet. This work generated useful information to countries planning to build or improve their system, by learning from others' experience. It also enabled to advance on a pragmatic harmonization strategy: EARS-Vet shall follow the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards, collect quantitative data and interpret AMR data using epidemiological cut-off values.

3.
J Antimicrob Chemother ; 77(3): 816-826, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35022739

RESUMO

BACKGROUND: Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. OBJECTIVES: To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. METHODS: The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). RESULTS: EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. CONCLUSIONS: A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.


Assuntos
Saúde Única , Animais , Antibacterianos/farmacologia , Bactérias , Gatos , Bovinos , Galinhas , Cães , Farmacorresistência Bacteriana , Feminino , Suínos
4.
Int J Antimicrob Agents ; 46(3): 297-306, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26215780

RESUMO

Since its introduction in the 1950s, colistin has been used mainly as a topical treatment in human medicine owing to its toxicity when given systemically. Sixty years later, colistin is being used as a last-resort drug to treat infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae (e.g., Escherichia coli, Klebsiella pneumoniae), for which mortality can be high. In veterinary medicine, colistin has been used for decades for the treatment and prevention of infectious diseases. Colistin has been administered frequently as a group treatment for animal gastrointestinal infections caused by Gram-negative bacteria within intensive husbandry systems. Given the ever-growing need to retain the efficacy of antimicrobials used to treat MDR infections in humans, the use of colistin in veterinary medicine is being re-evaluated. Despite extensive use in veterinary medicine, there is limited evidence for the development of resistance to colistin and no evidence has been found for the transmission of resistance in bacteria that have been spread from animals to humans. Since surveillance for colistin resistance in animals is limited and the potential for such transmission exists, there is a clear need to reinforce systematic monitoring of bacteria from food-producing animals for resistance to colistin (polymyxins). Furthermore, colistin should only be used for treatment of clinically affected animals and no longer for prophylaxis of diseases, in line with current principles of responsible use of antibiotics.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , Colistina/uso terapêutico , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacos , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Quimioprevenção/métodos , Enterobacteriaceae/efeitos dos fármacos , União Europeia , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...